

Benefits and Costs in Secondary Markets

Yoshitsugu Kanemoto

BGVW Chapters 5

- Questions
- Partial equilibrium and general equilibrium demand functions
- Benefits including indirect impacts
 - Consumer surplus + Producer surplus
 Gross consumer surplus (Social benefit) Social cost
 - Average cost, Marginal cost

- A big transportation investment induces large impacts on regional economy, e.g., rises in land values. Should these be added to direct benefits?
- Should the benefits of increased employment be added to direct benefits?
- Should an increase in tax revenues of a local government be included in the benefits?

Benefits and costs in secondary markets

- Primary and secondary markets
 - Primary market: the market affected directly by a policy
 - Secondary market: the market indirectly affected
- Impacts on secondary markets
 - Reduction in highway toll: Increase traffic in the highway, decrease traffic and congestion in other roads
 - Subsidy for child care: Increase in demand for nursery, increase in working mothers
- Further changes in the primary market
 - Changes in secondary markets are fed back to the primary market.
 - Find an equilibrium after these feedbacks are settled.
- Preview of the main results
 - In a first best economy with no price distortion, benefits and costs in secondary markets cancel out each other
 - With price distortion, they do not in general cancel out each other

Benefits in primary and secondary markets: Basic steps

- GRIPS
- Forecast quantities demanded, prices, and costs for Without and With cases (four points in a market).
- Estimate the net benefits in secondary markets in the same way as in the primary market.
 - Use the rule of a half if demand curves are linear.

The hatched area in the secondary market cannot represent a decrease in CS

- Benefits of those who continue to use Route 2 cannot change
- No change in net benefit for those who move from Route 2 to Route 1 because they are indifferent
- Users of Route 1 benefits from a decline in price

Route 1

Route 2

Partial equilibrium and general equilibrium demand curves

- Demand in a market depends on the price in the other market. A fall in price in route 1 makes the partial equilibrium demand curve for route 2 to shift down.
- > The price (generalized cost) in the second market is determined by the supply side conditions.
 - > The generalized cost in the local road is determined by technological conditions (traffic volume and road capacity).
 - > If the secondary market is competitive, the supply curve yields the general equilibrium demand curve.
 - Might differ from the MSC because of externalities, taxes, etc.
- The general equilibrium demand curve is a misleading name. More appropriate is the equilibrium locus

GRIPS

GCS (SB) with general equilibrium demand curves

The WTP of a person who moves yields the change in GCS.

 Q_1

 O_1

 Q_1^{B}

 Q_1^A

 Q_2

 Q_2^A

 Q_2^B

 O_2

Benefits of toll reduction: Estimates with AC

THE UNIVERSITY OF TOKYC

GRIPS

Expressway Case: Reduction in congestion on local roads

- Impacts on local roads
 - Without: Generalized cost = 4,720, Social cost = 4,800 (=4,720 153 + 232), Traffic = 24,000/day
 - With: Generalized cost = 4,284, Social cost = 4,370, Traffic = 18,000/day (Includes congestion reduction effects)
- Benefits in local roads (in thousand yen)
 - $\Delta SB(GCS) = (4,720 + 4,284)x(18 24)/2 = -27,012$
 - Δ SC = 4,370 x 18 4,800 x 24 = -36,540
 - $\Delta SS = \Delta SB \Delta SC = 9,528$
- Total benefits
 - Benefits in expressway + Benefits in local roads = 3,208 + 9,528 = 12,736

GCS (Social Benefit) - Social Cost

$$\Delta SS = \sum_{i} \Delta SS_{i} = \sum_{i} \left\{ \Delta GCS_{i} - \Delta SC_{i} \right\}$$

$$\Delta GCS_{i} = \frac{1}{2} (p_{i}^{A} + p_{i}^{B})(Q_{i}^{A} - Q_{i}^{B})$$

$$\Delta SC_{i} = SC_{i}^{A} - SC_{i}^{B}$$

$$\Delta SS_{i} = \frac{1}{2} (p_{i}^{A} + p_{i}^{B})(Q_{i}^{A} - Q_{i}^{B}) - (SC_{i}^{A} - SC_{i}^{B})$$

Benefit Assessment Formula #2

Consumer Surplus + Producer Surplus

$$\Delta SS_{i} = \Delta CS_{i} + \Delta PS_{i} + \Delta T_{i} - \Delta EC_{i}$$

$$\Delta CS_{i} = \frac{1}{2}(p_{i}^{B} - p_{i}^{A})(Q_{i}^{A} + Q_{i}^{B})$$

$$\Delta PS_{i} = ((p_{i}^{A} - t_{i}^{A}) - AC_{i}^{A})Q_{i}^{A} - ((p_{i}^{B} - t_{i}^{B}) - AC_{i}^{B})Q_{i}^{B}$$

$$\Delta T_{i} = t_{i}^{A}Q_{i}^{A} - t_{i}^{B}Q_{i}^{B}$$

$$\Delta EC_{i} = (ASC_{i}^{A} - AC_{i}^{A})Q_{i}^{A} - (ASC_{i}^{B} - AC_{i}^{B})Q_{i}^{B}$$

$$AC : \text{Average Private Cost}$$

Benefit estimates with MC

No indirect benefits in first best: Intuitive Explanation

- Estimate the social cost by marginal cost curve
- First best
 - Marginal cost = Price
 - Change in GCS = Change in SC
 - Indirect effects in Market
 2 cancel out each other
 - Benefits of price decrease on the demand side = Increase in costs on the supply side

Benefit Assessment Formula # 3: Marginal Costs

Marginal Benefits and Marginal Costs

$$\Delta SS_i = \int_{Q_i^B}^{Q_i^A} \left[MSB_i(Q_i) - MSC_i(Q_i) \right] dQ_i$$

- MSB is usually the price that demanders pay.
- The difference between MSB and MSC includes taxed, externalities, and monopoly pricing.
- Special case: Constant tax rate and constant marginal external cost MEC

 $\Delta SS_i = (\tau_i - MEC_i) \Delta Q_i$

• Price distortion in other markets: $t_i = MSB_i - MSC_i$

Taxes, Monopoly power, Externalities
 A change in market 1 (Formula #1):
 $\Delta SS_1 = \frac{1}{2}(p_1^A + p_1^B)\Delta Q_1 - \Delta SC_1$

Secondary markets: Summary

- In a first best economy, benefits and costs in secondary markets cancel out each other
 - If indirect effects increase demand in the primary market, the benefit in the primary market increases.
 - ► Example: Road Investment → New firms → Increased production → Increase in traffic
- In a second best economy with price distortion, benefits and costs in secondary markets do not cancel out
 - The benefits in secondary markets may be positive or negative
 - \triangle SS = Price Distortion x \triangle Q

Quick Questions #3_1

- Is it true that when MC > AC, MC is upward sloping?
- Should you add to the benefits an increase in employment caused by constructing a dam? How about in an area with serious involuntary unemployment problems?
- Should you add to the benefits an increase in tax revenue generated by a road investment?

Applications: Benefits of transportation investment

THE UNIVERSITY OF TOKYC

 p_1

 p_1^B

 p_1^A

GRIPS

Urban development project: market failures

- Market failures: Efficiency aspect
 - Agglomeration externalities
 - Commercial agglomeration, Office agglomeration, Tourism, Entertainment
 - External costs in road transportation
 - Congestion, accidents, air pollution, global warming, noise externalities
 - Scale economy in public transportation
 - Economies of density, fixed costs, discontinuation of public transit services
 - External costs related to energy consumption
 - Global warming, air pollution
 - Natural environment and agriculture in outskirts
 - Costs of public service provision
- Market failure: Equity aspect
 - Transportation for the aged and handicapped
 - Impacts on urban poor

GRIPS

Urban development project: Impacts and evaluation

- Impacts on
 - Commercial activities
 - New agglomerations: commercial, residential, and others
 - Convenience for consumers
 - Transportation demand and congestion
 - External costs

Cost-Benefit Analysis

- Primary market: activities in the developed area
- Secondary markets: transportation, other areas, tourism
 - Net benefits or costs only when price distortions exist.
 - How to assess price distortions: price-cost margin, external costs
 - Caution: Benefits of increased agglomeration in one area might be offset by decreases in other areas

Wider Economic Benefits (UK)

- Benefits additional to conventional direct benefits (UK DfT)
 - TAG Unit 2.8 and 3.5.14 (http://www.dft.gov.uk/webtag/)
- Economic Appraisal of Crossrail 2005
 - Move to More Productive Jobs: Tax parts only
 - Increase in GDP x 30%
 - Pure Agglomeration: agglomeration benefits
 - The whole increase in output from increased employment density
 - Fail to recognize adverse impacts on agglomerations in other areas that lose population (Kanemoto 2012, 2013)
 - Increase in labour force participation: Tax parts and reductions in benefits
 - Increase in GDP x 40%
 - 21% of time savings accruing to commters
 - Impacts on imperfect competition:
 - Benefits to trips in work time x 10%

Crossrail evaluation 2005

- Crossrail Project in London (Map)
 - http://www.crossrail.co.uk/benefits/wider-economic-benefits/

Benefits and costs	Value (£m PV)	а.
Total costs	13,902	Y
Less net rail revenues	-6,149	V -
Plus indirect tax reductions	1,207	La Car
Net cost to Government	8,960	
Conventional user benefits	16,093	
Agglomeration benefits	3,094	
Imperfect competition	486	
Move to more productive jobs	3,232	
Labor force participation	349	
Total wider economic benefits	7,161	

