

Benefits and Costs in Primary Markets

Yoshitsugu Kanemoto

BGVW Chapters 3 & 4

Questions

- Consumer surplus and producer surplus
- Social benefit (Gross consumer surplus)
- Social surplus
- Costs and producer surplus

- How to measure the benefits of a public project (for example a transportation investment)?
- How to measure the benefits of a price change?
- Can a money-losing project be justified?
- Should an increase in tax revenues of a local government be included in the benefits?

Consumer surplus and producer surplus: Review

- Consumer surplus: The area to the left of a demand curve
 - Height of a demand curve = Willingness to pay (WTP)
 - WTP: Maximum amount an individual is willing to pay to obtain something good
 - Net benefit for a consumer = WTP - Price
- Producer (supplier) surplus: The area to the left of a supply curve
 - Height of a supply curve:
 Opportunity cost = Marginal cost
 - Opportunity Cost: Value of an input in its best alternative use
- Social Surplus: Consumer surplus + Producer surplus

Benefits in the primary market

- Forecast quantities demanded, prices, and costs for Without and With cases (four points in a market).
- Estimate net benefits using the rule of a half if demand curves are linear.

GRIPS

- The demand curve is ^p_A often assumed to be a straight line.
- Rule of a half (Trapezoid rule) for a_{p^B} linear demand curve: Example: $p^B \rightarrow p^A p^A p^A$
 - B: Without
 - A: With

$$B = \frac{1}{2} \left(p^B - p^A \right) \left(Q^A + Q^B \right)$$

Gross Consumer Surplus (Social Benefit) & Consumer Surplus

- Gross Consumer Surplus (Social Benefit) = Consumer Surplus + Expenditure
 - GCS is often called Social Benefit in Public Economics textbooks.
 - GCS is the total amount of WTP
 - GCS includes the price that consumers pay.

Expressway case:

 △ GCS (SB) = (3342 + 2592)x(16 -8)/2 = 23,736 (thousand yen)

$$\Delta GCS (= \Delta SB) = \frac{1}{2} (p^{B} + p^{A}) (Q^{A} - Q^{B})$$

Social Surplus with GCS and ASC

"Two ways of measuring the social surplus

- SS = GCS SC
- SS = CS + PS + GR EC
 - GR: Government Revenue
 - EC: External Costs
- Relationship
 - GCS = CS + Expenditure
 - PS = Revenue for suppliers
 Private (variable) cost
 c(Q)
 - SC = Private (variable) cost
 + EC
 - GR = Expenditure Revenue for suppliers

GRIPS

Total Costs, Average Costs, and Marginal Cost

- Cost concepts: Total
 Cost, Total Variable Cost,
 Fixed Cost, Average
 Cost, Marginal Cost
- ► TC = TVC + F
- AC = TC/Q
- AVC = TVC/Q = (TC - F)/Q
- MC = $\Delta TC/\Delta Q$ = $\Delta TVC/\Delta Q$ = MVC

Average Costs and Marginal Cost

raS

GRIPS

Total and Marginal Costs: Discrete Quantities

$$TVC(Q) = \int_0^Q MC(q) dq \approx \sum_{i=1}^n MC(q_i) \Delta q$$
$$q_1 = 0; q_{i+1} = q_i + \Delta q; q_n + \Delta q = Q$$

Producer Surplus

- Producer Surplus: Area to the left of the supply curve
- Supply Curve = MC Curve Price, MC, AC
 - A supply curve assumes that suppliers are competitive.
- Two equivalent estimation methods: MC or AC(AVC)
- PS (Producer surplus) = Revenue – TVC
 - TVC = Area under MC curve (hatched area) = AVC x Q (rectangle)

Quick Questions #3_1

- Is it true that when MC > AC, AC is downward sloping?
- Should you add to the benefits an increase in employment caused by constructing a dam? How about in an area with serious unemployment problem?
- Should you add to the benefits an increase in tax revenue generated by a road investment?

GRIPS

Summary: Measuring the social surplus in the primary market

- SS = GCS SC
- SS = CS + PS + GR EC
- Relationships
 - □ GCS = CS + Expenditure
 - PS = Revenue for suppliers Private (variable) cost
 - SC = Private (variable) cost + EC
 - GR = Expenditure Revenue for suppliers
- Total costs, average costs, marginal costs
 - $\Box TC = AC \times Q$
 - TVC = Area below the MC curve

^{*p*} Surpluses with marginal costs

Complexity of applications

Highway

- Price: Generalized cost including time costs, operating costs, expressway tolls
- Social costs: Include external costs, but exclude transfers (taxes and tolls)
- Education and training program: Raises wage rates
 - Price: Wage rate
 - Social costs of labor supply: Can be measured by the supply curve

to YO

Expressway Case: NIHONKAI-TOHOKU EXPRESSWAY (Shibata - Niigata)

Toll reduction experiment

Route	Local Road Route	Expressway Route		
Road Type	Local Road	Expressway	Local Road	
Distance (km)	24	26	4	
Speed (km/hour)	28	80	30	

Evaluate the benefits of a toll reduction from ¥750

1. 試行中・後の状況(一般国道7号新新バイバス濁川IC付近より新発田方向を望む)

GrasPr THE UNIVERSITY OF TOKYO Kanemoto, Hasuike, Fujiwara (金本·蓮池·藤原) 第2章 4節

Expressway Case: Cost Structure

- User costs (Generalized cost): Costs paid by each user, corresponds to price in a demand-supply diagram
 - Time costs
 - Expressway tolls: transfer
 - Operating costs
 - Fuel tax: Transfer
 - ▶ Fuel costs, Depreciation costs, etc.
- Social costs: costs borne by society as a whole (users + non-users)
 - User costs excluding transfers
 - Time costs
 - Vehicle operating costs (excluding fuel tax)
 - External costs
 - Global warming
 - Air pollution
 - Accidents
 - (Congestion externality: already included in user costs)

Graspic eferences: World Bank Transport Notes No. TRN-5, 14, 15, 16 THE UNIVERSITY OF TOKY Many of the materials in the notes will be treated later in the course.

Expressway Case: Estimates of the generalized cost and traffic volume

		Expres	ssway Route	Loca	1 Road Route
Time (minutes)			27.5		51.43
Time cost (yen/vehicle)	(A)		2, 167		4,052
Toll (yen/vehicle)	(B)		750		
Operating costs (yen/vehicle)					
Fuel tax	(C1)		146		153
Operating cost - Fuel tax	(C2)		280		515
Generalized cost (yen/vehicle)	(A+B+C1+C2)		3, 343		4,720
Traffic (vehicle/Day)		8,000		24,000	
Cost	Cost components		Cost per	r unit	
Fuel cost (yen/vehicle,km) 28k		xm/h	6.37 (6	5. 37)	Fuel tax in the bracket
	30k	xm∕h	6.16 (6	5. 15)	
Expi	ressway 80k	xm∕h	4.70 (4	l. 66)	
Time cost (yen/vehicle, minute)			78.8		
Operating cost (yen/vehicle, k		xm)	27.8		
			27.	4	
Expressay		τ	12.	1	

Based on MLIT 2003 Manual

 Obtain unit cost estimates (e.g., fuel cost per vehicle kilometer) from a variety of sources such as manuals, guidelines, academic research, past experiences

Expressway Case: Estimates of social costs

Cost components	Expressway Route		Local Road Route			
User costs (Exc. taxes & tolls) Subtotal	1 (A)	2,447		4, 567		
Time cost		2, 167		4,052		
Operating cost (Excl. taxes & tolls)	(A2)	280		515		
Taxes & Tolls Subtotal	(B)	896		153		
Expressway toll	(B1)	750				
Fuel tax	(B2)	146		153		
Generalized cost	(A+B)	3, 343		4,720		
External costs Subtotal	(C)	120		232		
Global warming	(C1)	50		53		
Air pollultion	(C2)	26		27		
Accident costs	(C3) 44			152		
Social cost	(A+C)	2, 567		4,800		
Cost components			Cost per unit			
Accident costs (yen/vehicle,km,day) Local			6.36			
			0.74			
Global warming (yen/liter)				19.3		
Air pollution (yen/liter)		9.9				

The Benefit of Expressway Toll Reduction

- Estimate the benefit of the Expressway toll reduction: 750 to 0
- Impacts of the toll reduction:
 - Expressway route: From 8,000 to 16,000 vehicles per day
 - Local road route: From 24,000 to 18,000
- Changes in GCS and SC
- Complications
 - External costs and benefits
 - Taxes and toll revenues
 - Secondary markets
 - If no price distortion, benefits and costs measured in monetary unit cancel out each other.
 - With price distortions, net benefits or costs in secondary markets: Congestion reduction in another route

The expressway case: The primary market

- External costs, taxes and tolls (per vehicle, average costs)
 - Expressway toll = 750yen/vehicle, Fuel tax = 146 yen/Vehicle, External costs: 120 yen/Vehicle
 - Without: Generalized cost = 3,343 yen/vehicle; Social cost = 2,567; Traffic = 8,000 vehicles/day
 - With: Generalized cost = 2,592 yen/vehicle; Social cost = 2,567, Traffic = 16,000 vehicles/day
- ► SS = GCS (SB) SC
 - \triangle GCS (SB) = (3,343 + 2,593) x(16 8) / 2 = 23,744
 - ▶ △ SC= 2,567 x (16 8) = 20,536
 - $\Delta SS = \Delta GCS \Delta SC = 3,208$
- SS = CS + PS + Gov. Revenue External Costs
 - △ CS = (3,343 2,593) * (16 + 8) / 2 = 9,000
 - ▶ △ PS = (3,343-(750+146)-2447) * 8 ((2,593-146)-2447) * 16 = 0
 - > Drivers/users are the suppliers of transportation services.
 - △ Gov. Revenue = 146 * 16 (750+146) * 8 = 4,832
 - The highway company is included in the government sector.
 - ▲ External Costs = 120 * 8 = 960
 - \triangle SS= \triangle CS + \triangle PS + \triangle Gov. Revenue \triangle External Costs = 3,208

Applications:

Deficit does not mean a negative net social benefit

- SS = SB TVC
 = CS + PS
- PS = pQ TVC
- Deficits do not mean negative net social benefits
 - Net Social
 Benefit
 = SS F
 - = CS Deficit

Applications: Traffic congestion

- AVC: Private cost borne by each user
 = Average cost per person
- Congestion: Upward sloping AVC
 - MC > AC ↔ Marginal Social Cost > Private Cost
- Social surplus when congestion tolls are not levied?
 - With AC, the triangle
 - With MC, the hatched area minus the shaded area (called the deadweight loss)

