Benefits and Costs in Primary Markets

Yoshitsugu Kanemoto

BGVVW Chapters 3 & 4
Outline

- Questions
- Consumer surplus and producer surplus
- Social benefit (Gross consumer surplus)
- Social surplus
- Costs and producer surplus
Questions

- How to measure the benefits of a public project (for example a transportation investment)?
- How to measure the benefits of a price change?
- Can a money-losing project be justified?
- Should an increase in tax revenues of a local government be included in the benefits?
Consumer surplus and producer surplus: Review

- **Consumer surplus**: The area to the left of a demand curve
 - Height of a demand curve = Willingness to pay (WTP)
 - WTP: Maximum amount an individual is willing to pay to obtain something good
 - Net benefit for a consumer = WTP - Price

- **Producer (supplier) surplus**: The area to the left of a supply curve
 - Height of a supply curve: Opportunity cost = Marginal cost
 - Opportunity Cost: Value of an input in its best alternative use

- **Social Surplus**: Consumer surplus + Producer surplus
Benefits in the primary market

- Forecast quantities demanded, prices, and costs for Without and With cases (four points in a market).
- Estimate net benefits using the rule of a half if demand curves are linear.
Consumer surplus: The rule of a half (Trapezoid rule)

- The demand curve is often assumed to be a straight line.
- Rule of a half (Trapezoid rule) for a linear demand curve:
 Example: \(p^B \rightarrow p^A \)
 - B: Without
 - A: With
 \[
 B = \frac{1}{2} \left(p^B - p^A \right) \left(Q^A + Q^B \right)
 \]
Gross Consumer Surplus (Social Benefit) & Consumer Surplus

- Gross Consumer Surplus (Social Benefit) = Consumer Surplus + Expenditure
 - GCS is often called Social Benefit in Public Economics textbooks.
 - GCS is the total amount of WTP
 - GCS includes the price that consumers pay.
- Expressway case:
 - \(\Delta GCS (SB) = (3342 + 2592) \times (16 - 8)/2 \)
 - \(= 23,736 \) (thousand yen)

\[
\Delta GCS (= \Delta SB) = \frac{1}{2} \left(p^B + p^A \right) \left(Q^A - Q^B \right)
\]
Social Surplus with GCS and ASC

- **Social Surplus: GCS**
 - Social Cost (SC)
 - \(SC = ASC \times Q \)
- **\(\Delta GCS = \) Hatched Area**
- **\(\Delta SC = \) Thick Line Area**
- **\(\Delta SS = \Delta GCS - \Delta SC \)**
Two ways of measuring the social surplus

- SS = GCS – SC
- SS = CS + PS + GR – EC
 - GR: Government Revenue
 - EC: External Costs
- Relationship
 - GCS = CS + Expenditure
 - PS = Revenue for suppliers – Private (variable) cost $c(Q)$
 - SC = Private (variable) cost + EC
 - GR = Expenditure – Revenue for suppliers
Total Costs, Average Costs, and Marginal Cost

- Cost concepts: Total Cost, Total Variable Cost, Fixed Cost, Average Cost, Marginal Cost
- \(TC = TVC + F \)
- \(AC = \frac{TC}{Q} \)
- \(AVC = \frac{TVC}{Q} = \frac{(TC – F)}{Q} \)
- \(MC = \frac{\Delta TC}{\Delta Q} = \frac{\Delta TVC}{\Delta Q} = MVC \)
Average Costs and Marginal Cost

\[TVC(Q) = \int_0^Q MC(q) dq \]
Total and Marginal Costs: Discrete Quantities

\[TVC(Q) = \int_0^Q MC(q) dq \approx \sum_{i=1}^n MC(q_i) \Delta q \]

\[q_1 = 0; q_{i+1} = q_i + \Delta q; q_n + \Delta q = Q \]
Producer Surplus

- Producer Surplus: Area to the left of the supply curve

Supply Curve = MC Curve
 - A supply curve assumes that suppliers are competitive.

Two equivalent estimation methods: MC or AC(AVC)

PS (Producer surplus) = Revenue – TVC
 - TVC = Area under MC curve (hatched area) = AVC x Q (rectangle)
Quick Questions #3_1

- Is it true that when MC > AC, AC is downward sloping?
- Should you add to the benefits an increase in employment caused by constructing a dam? How about in an area with serious unemployment problem?
- Should you add to the benefits an increase in tax revenue generated by a road investment?
Summary: Measuring the social surplus in the primary market

- \(SS = GCS - SC \)
- \(SS = CS + PS + GR - EC \)

Relationships

- \(GCS = CS + \text{Expenditure} \)
- \(PS = \text{Revenue for suppliers} - \text{Private (variable) cost} \)
- \(SC = \text{Private (variable) cost} + EC \)
- \(GR = \text{Expenditure} - \text{Revenue for suppliers} \)

- Total costs, average costs, marginal costs
 - \(TC = AC \times Q \)
 - \(TVC = \text{Area below the MC curve} \)
Surpluses with average costs

\[Q = d(p) \]

\[p \]

\[p - t \]

\[ASC \]

\[AC \]

\[EC \]

\[TSC \]

\[CS \]
Surpluses with marginal costs

\[Q = d(p) \]

\[p \]

\[p - t \]

\[MSC \]

\[MC \]

\[EC \]

\[TSC \]

\[Q \]
Complexity of applications

- **Highway**
 - Price: Generalized cost including time costs, operating costs, expressway tolls
 - Social costs: Include external costs, but exclude transfers (taxes and tolls)

- **Education and training program:**
 - Raises wage rates
 - Price: Wage rate
 - Social costs of labor supply: Can be measured by the supply curve
Expressway Case: NIHONKAI-TOHOKU EXPRESSWAY (Shibata - Niigata)

Toll reduction experiment

<table>
<thead>
<tr>
<th>Route Type</th>
<th>Local Road</th>
<th>Expressway</th>
<th>Local Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (km)</td>
<td>24</td>
<td>26</td>
<td>4</td>
</tr>
<tr>
<td>Speed (km/hour)</td>
<td>28</td>
<td>80</td>
<td>30</td>
</tr>
</tbody>
</table>

Evaluate the benefits of a toll reduction from ¥750 to ¥0.
Expressway Case: Cost Structure

- User costs (Generalized cost): Costs paid by each user, corresponds to price in a demand-supply diagram
 - Time costs
 - **Expressway tolls:** transfer
 - Operating costs
 - **Fuel tax:** Transfer
 - Fuel costs, Depreciation costs, etc.

- Social costs: costs borne by society as a whole (users + non-users)
 - User costs excluding transfers
 - Time costs
 - Vehicle operating costs (excluding fuel tax)
 - **External costs**
 - Global warming
 - Air pollution
 - Accidents
 - (Congestion externality: already included in user costs)

References: World Bank Transport Notes No. TRN-5, 14, 15, 16
Many of the materials in the notes will be treated later in the course.
Expressway Case: Estimates of the generalized cost and traffic volume in the Without case

<table>
<thead>
<tr>
<th>Cost components</th>
<th>Expressway Route</th>
<th>Local Road Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (minutes)</td>
<td>27.5</td>
<td>51.43</td>
</tr>
<tr>
<td>Time cost (yen/vehicle)</td>
<td>2,167</td>
<td>4,052</td>
</tr>
<tr>
<td>Toll (yen/vehicle)</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>Operating costs (yen/vehicle)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel tax (C1)</td>
<td>146</td>
<td>153</td>
</tr>
<tr>
<td>Operating cost - Fuel tax (C2)</td>
<td>280</td>
<td>515</td>
</tr>
<tr>
<td>Generalized cost (yen/vehicle) (A+B+C1+C2)</td>
<td>3,343</td>
<td>4,720</td>
</tr>
<tr>
<td>Traffic (vehicle/Day)</td>
<td>8,000</td>
<td>24,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost components</th>
<th>Cost per unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel cost (yen/vehicle, km) 28km/h</td>
<td>6.37 (6.37)</td>
</tr>
<tr>
<td>30km/h</td>
<td>6.16 (6.15)</td>
</tr>
<tr>
<td>Expressway 80km/h</td>
<td>4.70 (4.66)</td>
</tr>
<tr>
<td>Time cost (yen/vehicle, minute)</td>
<td>78.8</td>
</tr>
<tr>
<td>Operating cost (yen/vehicle, km)</td>
<td>27.8</td>
</tr>
<tr>
<td></td>
<td>27.4</td>
</tr>
<tr>
<td>Expressway</td>
<td>12.1</td>
</tr>
</tbody>
</table>

Based on MLIT 2003 Manual

- Obtain unit cost estimates (e.g., fuel cost per vehicle kilometer) from a variety of sources such as manuals, guidelines, academic research, past experiences
Expressway Case: Estimates of social costs

<table>
<thead>
<tr>
<th>Cost components</th>
<th>Expressway Route</th>
<th>Local Road Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>User costs (Exc. taxes & tolls)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (A)</td>
<td>2,447</td>
<td>4,567</td>
</tr>
<tr>
<td>Time cost</td>
<td>2,167</td>
<td>4,052</td>
</tr>
<tr>
<td>Operating cost (Excl. taxes & tolls)</td>
<td>280</td>
<td>515</td>
</tr>
<tr>
<td>Taxes & Tolls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (B)</td>
<td>896</td>
<td>153</td>
</tr>
<tr>
<td>Expressway toll</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>Fuel tax</td>
<td>146</td>
<td>153</td>
</tr>
<tr>
<td>Generalized cost</td>
<td>(A+B)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,343</td>
<td>4,720</td>
</tr>
<tr>
<td>External costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (C)</td>
<td>120</td>
<td>232</td>
</tr>
<tr>
<td>Global warming</td>
<td>50</td>
<td>53</td>
</tr>
<tr>
<td>Air pollution</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>Accident costs</td>
<td>44</td>
<td>152</td>
</tr>
<tr>
<td>Social cost</td>
<td>(A+C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,567</td>
<td>4,800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost components</th>
<th>Cost per unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident costs (yen/vehicle, km, day)</td>
<td>6.36</td>
</tr>
<tr>
<td>Local</td>
<td>0.74</td>
</tr>
<tr>
<td>Global warming (yen/liter)</td>
<td>19.3</td>
</tr>
<tr>
<td>Air pollution (yen/liter)</td>
<td>9.9</td>
</tr>
</tbody>
</table>
The Benefit of Expressway Toll Reduction

- Estimate the benefit of the Expressway toll reduction: 750 to 0

- Impacts of the toll reduction:
 - Expressway route: From 8,000 to 16,000 vehicles per day
 - Local road route: From 24,000 to 18,000

- Changes in GCS and SC

- Complications
 - External costs and benefits
 - Taxes and toll revenues
 - Secondary markets
 - If no price distortion, benefits and costs measured in monetary unit cancel out each other.
 - With price distortions, net benefits or costs in secondary markets: Congestion reduction in another route
The expressway case: The primary market

- External costs, taxes and tolls (per vehicle, average costs)
 - Expressway toll = 750 yen/vehicle, Fuel tax = 146 yen/vehicle, External costs: 120 yen/vehicle
 - Without: Generalized cost = 3,343 yen/vehicle; Social cost = 2,567; Traffic = 8,000 vehicles/day
 - With: Generalized cost = 2,592 yen/vehicle; Social cost = 2,567, Traffic = 16,000 vehicles/day

\[SS = GCS \ (SB) - SC \]

\[\Delta GCS \ (SB) = (3,343 + 2,593) \times (16 - 8) / 2 = 23,744 \]
\[\Delta SC = 2,567 \times (16 - 8) = 20,536 \]
\[\Delta SS = \Delta GCS - \Delta SC = 3,208 \]

\[SS = CS + PS + Gov. Revenue - External Costs \]

\[\Delta CS = (3,343 - 2,593) \times (16 + 8) / 2 = 9,000 \]
\[\Delta PS = (3,343 - (750+146)-2447) \times 8 - ((2,593-146)-2447) \times 16 = 0 \]
 - Drivers/users are the suppliers of transportation services.
\[\Delta Gov. Revenue = 146 \times 16 - (750+146) \times 8 = -4,832 \]
 - The highway company is included in the government sector.
\[\Delta External Costs = 120 \times 8 = 960 \]
\[\Delta SS = \Delta CS + \Delta PS + \Delta Gov. Revenue - \Delta External Costs = 3,208 \]
Expressway example: Social Surplus

\[Q = D(p) \]

\[p^A = 2,593 \]

\[p^B = 3,343 \]

\[ASC^b = ASC^A = 2,567 \]

\[∆CS \]

\[∆SS \]

\[∆GCS \]

\[∆SC \]

\[Q^B = 8,000 \]

\[Q^A = 16,000 \]
Applications:
Deficit does not mean a negative net social benefit

- $SS = SB - TVC$
 $= CS + PS$

- $PS = pQ - TVC$

- Deficits do not mean negative net social benefits

- Net Social Benefit
 $= SS - F$
 $= CS - Deficit$
Applications: Traffic congestion

- **AVC**: Private cost borne by each user = Average cost per person

- Congestion: Upward sloping AVC
 - MC > AC ↔ Marginal Social Cost > Private Cost

- Social surplus when congestion tolls are not levied?
 - With AC, the triangle
 - With MC, the hatched area minus the shaded area (called the deadweight loss)