

Direct Estimation of Demand Curves

Yoshitsugu Kanemoto

BGVW Chapter 13

Outline

Calibration of demand curves

- One point on a demand curve + slope (elasticity)
- Elasticity
- Multiple observations
- Econometric estimation
 - Example
 - **OLS**
 - Problems of OLS

One point on the demand curve + slope (or elasticity)

Waste disposal

- 2.60 (lb/p/d) at price= 0
- MSC: \$0.06/lb
- Linear demand curve
 - $q = \alpha_0 + \alpha_1 p$
 - Estimate by literature survey
 - $\alpha_1 = -0.4$
 - External validity
- Benefits of pricing refuse collection
 - With: Price = \$0.05/lb
 - Without: Price = \$0/lb
 - Net benefit = Gray area

Elasticity

 Price elasticity of a linear demand curve

$$E_d = \frac{\Delta q}{\Delta p} / \frac{q}{p}$$
$$= \alpha_1 p / q$$

From price elasticity to slope

$$\alpha_1 = E_d q / p$$

Constant elasticity demand curves

Log-linear

$$q = \beta_0 p^{\beta_1}$$

$$\ln q = \ln \beta_0 + \beta_1 \ln p$$

NB: Different from (13.5) in the textbook

▶ Consumer surplus: With (p_1, q_1) , Without (p_0, q_0)

$$\Delta CS = (p_0 q_0 - p_1 q_1)/(1 + \beta_1)$$

Gross consumer surplus

$$Area = \left(\frac{1}{\beta_0}\right)^{1/\beta_1} \frac{q_1^{\rho} - q_0^{\rho}}{\rho} \qquad \rho = \left[1 + \frac{1}{\beta_1}\right]$$

Extrapolating from a few observations

- 2 points + linear demand curve: Dangerous to use
 - The functional form may not be linear
 - Other factors than demand: might be a supply curve rather than a demand curve

Example

flu vaccination

shopping bag tax

Econometric estimation: Example

Demand for gasoline: Futamura (2000)

$$\ln q = 8.931 - 0.186 \ln p + 0.707 \ln I - 0.247 \ln E - 0.081 D_1 - 0.101 D_2$$

$$(3.50) (-2.74) \qquad (2.52) \qquad (-0.46) \qquad (-2.55) \qquad (-5.03)$$

- Price p, Income (GDP) I, Average gas mileage E,
 Dummy for 1988 1997 (Bubble) D₁, Dummy for 1985
 1988 (High yen exchange rate) D₂
- Macro time series data

Kanemoto, Hasuike, and Fujiwara Chapter 7, in Japanese

Econometric estimation: OLS

Formulation of a model

- q = f(p, I, T) + uExample: $q = a_0 + a_1p + a_2I + a_3T + u$
- OLS estimates are "good" in the following sense.
 - Explanatory variables are independent from the error term, Expected value of the error term is zero, Explanatory variables are not multicollinear → Unbiased
 - ► Equal variances of the error terms, No correlation between error terms → Best Linear Unbiased Estimate (minimum variance among unbiased estimates)

Problems with econometric estimates

- Omitted Variable Problem
- Multicollinearity
- Choice of functional form
 - linear, log-linear, translog, Box-Cox, etc.
- Identification
 - In order to estimate the demand function, we need exogenous variables that do not belong to the demand function
 - Cases where identification is easy
 - Government intervention: Different tax rates for regions
 - Government supply
 - Exogenous prices: Expressway tolls

Data types

- The level of aggregation
 - Microdata, regional aggregation (municipality, prefecture, etc.)
- Cross section vs. Time series
 - Long-run and short-run elasticities
 - Cross-sectional data: long-run elasticities
 - Time series data: short-run elasticities
 - Short-run elasticities < long-run elasticities</p>
 - Statistical problems
 - Cross-section: heteroskedasticity (the error terms have different variances)
 - Time-series: autocorrelation (the error terms are correlated over time)
 - Both problems can be tested for and corrected using generalized least squares (GLS) instead of OLS.
- Pooled data, Panel data
 - Pooled cross-sectional and time-series data
 - Rich source of information
 - Requires more complicated econometric methods

QQ #5_1

- ▶ 1. What is the most important weakness in the estimation of the gasoline demand curve by Futamura (2000)?
- 2. What would you do to overcome the weakness you pointed out above?